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Abstract--Solutions are presented for the Stokes flow past finite axial assemblages of up to 9 spheres 
in an infinitely long cylindrical tube for a wide range of sphere spacings and sphere to cylinder diameter 
ratios. General solutions are constructed from the fundamental solutions to the governing equation in beth 
the cylindrical and spherical coordinate systems. No-slip boundary conditions are enforced on the tube 
surface by constructing the Fourier transform of the general disturbance created by the spheres, as detected 
on the cylinder wall. The boundary conditions are then applied on the sphere surfaces by a previously 
developed series truncation technique. 

The calculated drag forces and zero-drag velocities demonstrate the interparticle interaction effects, the 
sphere-wall interactions, and the effects of wall damping on the inter-particle shielding phenomenon. 

1. I N T R O D U C T I O N  

The slow motion of an incompressible viscous fluid relative to assemblages of submerged 
particles has long been of interest in the areas of sedimentation, flow through packed and 
fluidized beds, suspension velocities, pollution abatement, and other engineering and bio- 
engineering applications. 

One particularly intriguing application is a study of the transient phenomenon of the 
formation of aggregates of red blood cells, or rouleaux, in the microcapillaries. It has been 
demonstrated by Leichtberg et al. (1976a) and Leichtberg et ai. (1976b) that the unequal particle 
interaction forces between identical red cells, which continually change as a function of particle 
spacing and velocity, provide a new hydrodynamic mechanism for the possible formation of 
rouleaux. These papers, however, deal exclusively with transient flows in unbounded and 
quasi-bounded media. This paper provides the necessary logical link by establishing the limits of 
validity of extrapolating the results of unbounded flow theory to the bounded flow reality of the 
microcirculation. It is shown here that the interparticle interactions observed in the unbounded flow 
problem also exist when the flow is bounded, but are subjected to wall damping which becomes 
significant at particle-to-tube diameter ratios of 0.5 or greater. 

The problem considered in this paper is the flow past a finite chain of rigid spheres moving 
slowly in a viscous fluid, which may be moving or stationary, inside an infinitely long cylindrical 
tube. The problems of multi-particle slow viscous flow have been previously treated extensively 
by four major approaches--the method of reflections, the point force approximation, the finite 
element method, and the technique of internal singularity distributions. 

The method of reflections, developed by Smoluchowski (1911, 1912) and used by Burgers 
(1940), Kynch (1959), and Happel & Brenner (1965) is an iterative approximation technique which 
has been extensively used to solve multi-particle and particle-wall interaction problems. Bohlin 
(1960), using an extension of the method of reflections as originally presented by Faxen (1923), 
obtained drag results for a single sphere moving along the axis of a cylinder which exhibit very 
good agreement with the earlier, more exact solution of Haberman & Sayre (1958), for 
sphere-to-cylinder diameter ratios of up to 0.6. For higher diameter ratios Bohlin's method breaks 
down due to certain simplifying assumptions. Other investigations using the method of reflections 
were conducted by Ladenburg (1907) and Faxen (1922) who studied the drag on spheres moving in a 
still liquid inside a long cylindrical tube. Wakiya (1953) and Happel & Byrne (1954) have examined a 
single sphere in Poiseuille flow inside a long cylinder, and Greenstein & Happel (1970) studied the 
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axial motion of two spheres perpendicular to their line of centers, obtaining results which are in 
excellent agreement with the experimental results of Bart (1959). 

The convergence characteristics of the method of reflections are strongly dependent on the 
ratio of the particle dimensions to the spacing between the particles and/or wall. When this ratio 
is small (i.e. a dilute system), a single reflection describes the particle interaction adequately, as 
was done by Hocking (1964). For concentrated systems (the ratio approaching unity) higher order 
interaction effects become significant. The leading term in the iterative series solution becomes a 
poor description of particle interaction effects and generates a series with very slow convergence 
characteristics. Furthermore, this method is extremely tedious to apply when more than two 
particles are present and thus would be very inefficient for treating the bounded finite particle 
assemblages considered in the present study. 

The point force technique, developed by Burgers (1938, 1941, 1942) and used by others, is only 
a useful approximation for dilute systems. It is inapplicable to concentrated systems or to any 
bounded flow, because of the inability of point forces to account for the angular dependence of 
disturbance on one surface due to the presence of other boundaries. 

The finite-element treatment of multi-particle slow flow was recently used by Skalak et al. 

(1972) in a capillary blood flow application. This method is a very promising technique for 
irregular but identical particles with periodic spacing. The method cannot easily be applied to 
transient interaction problems where the particle boundary conditions are not periodic, because 
of the slow decay properties of Stokes flow disturbances. 

The techniques described above have not been used when more than two objects are present 
except for the special case of the flow relative to an infinite chain of equally spaced particles 
along their line of centers. Because of the perfect periodicity existing in such infinite chains, this 
latter problem can be viewed as the flow past a single particle in a cell with periodic boundary 
conditions, e.g. Wang & Skalak (1969) and Chen & Skalak (1970). 

The technique of describing solid boundaries by a distribution of internal singularities is based 
on the work of Payne & Pell (1960) who have shown that the infinite set of simply separable 
singular solutions for each co-ordinate system provides a complete set of generating functions, 
which can be used to satisfy rather general viscous flow boundary conditions along any constant 
co-ordinate surface of the same orthogonal co-ordinate system. Gluckman et al. (1971) have 
taken advantage of the completeness of these fundamental separable solutions to obtain the exact 
Stokes solutions for a finite line array of spheres or spheroids in unbounded media, by placing a 
single infinite sequence of appropriate singularities at the origin of each sphere or spheroid. This 
study has shown that it is most efficient to use a truncated series of point singularities, and satisfy 
boundary conditions at discrete points on each object simultaneously. This method, the multipole 
truncation technique, yields first-, second-, and fifth-order truncation solutions for the drag which 
are accurate to 2.5, 0.1, and 0.001% respectively, for flow parallel to the axis of two touching 
spheres, in sharp contrast to the poor results obtained by the method of reflections. This method 
was later extended in Gluckman et al. (1972) to the exact treatment of axisymmetric Stokes flow 
past an arbitrary convex body of revolution in an unbounded medium. 

The principles developed by Payne & Pell were also used by Haberman & Sayre (1958) in 
obtaining an "exact" solution for a single sphere moving along the axis of an infinitely long 
cylinder. They employed the general solutions of the creeping motion equations in both the 
cylindrical and spherical co-ordinate systems, the latter being an expansion of the stream 
function. Wall correction factors were obtained for both rigid and fluid spheres, in both moving 
and stationary media. 

Hochmuth & Sutera (1970) treated the motion of a large sphere moving concentrically inside a 
long tube by combining the methods of Haberman & Sayre (1958) with lubrication theory 
arguments. The problem of a small sphere eccentrically located in close proximity to a tube wall was 
treated by Bungay & Brenner (1973a) via a regular perturbation procedure. Bungay & Brenner 
(1973b) employ a singular perturbation technique to examine asymmetric situations in which the 
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sphere occupies virtually the entire cross-section of the cylinder. Brenner (1970, 1971) studied the 
motion of a small, eccentric, neutrally-buoyant solid particle or liquid droplet, demonstrating that the 
pressure drop could be obtained without the need for a detailed solution satisfying the boundary 
conditions on the tube wall. 

The technique used in the present paper for finite chains of spheres inside a cylinder utilizes 
the infinite set of simply separable singular solutions in both the spherical and cylindrical 
coordinate systems to satisfy the tube boundary conditions, by constructing the Fourier 
transform of the spherical disturbances. The resulting solution satisfies the boundary conditions 
on the cylinder identically and is then used to satisfy the boundary conditions on all the spheres 
simultaneously in a manner similar to the multipole truncation technique developed in Gluckman 
et al. (1971). 

Section 2 presents the formulation of the problem, its governing equations and the boundary 
conditions. Section 3 outlines the solution procedure, and section 4 deals with the methods of 
calculating either the drag forces or zero-drag velocities. Sections 5 and 6 then present and 
discuss the results. 

2. FORMULATION OF THE PROBLEM 

The flows considered in this paper are assumed to be axisymmetric (see figure 1), so that the 
Stokes stream function exists. It is further assumed that the motion is sufficiently slow for the 
creeping motion equations to be valid: 

Vp =/x V2V, [2.1] 

V. V = O. [2.2] 

Taking the curl of both sides of [2.1] and introducing [2.2] and the stream function results in a 
fourth-order linear partial differential equation for the stream function: 

oJ = V X V = i3h3E2~b, [2.3] 

E2(E2ff) = 0, [2.4] 

where 

E2 h l h 2 r  d___3_fhlh3 a._o._~ + d (h2h3 O~] 
= h3 taq, \ h2 aq,/ 

[2.51 

Here (q~, q2, q3) are generalized orthogonal curvilinear coordinates, hm, h2, ha are the metrical 
coefficients of this coordinate system, E 2 is the generalized axisymmetric Stokesian linear 
operator, oJ is the vorticity, and ~ = O(ql, q2) is the Stokes stream function. In cylindrical 
coordinates, [2.5] reduces to (see figure 1 for coordinate definition) 

and in spherical coordinates, 

where 

0 2 1 0 0 2 
E 2 = - -  ~" [2.6] 

OR 2 R dR Oz 2' 

0 2 1 - ~.2 0~2 
E 4 ~.2, [2.7] a r  2 r 2 o g  

~" = cos O, [2.8] 

E2~b = for sin 0 =Rto. [2.9] 
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Figure 1. The system geometry. 

~ Z  

The geometry being considered is shown in figure 1. The various spheres in the N-sphere 
chain are equally spaced and are indexed from - (N - 1)/2 to (N - 1)/2 with the origin taken at the 
central sphere for convenience. Accordingly, the system is symmetrical about the z = 0 plane, and 
the descriptive equations are expected to be even functions of z if the sphere velocities Uj pattern 
the same symmetry. For an even number of spheres, a slight rearrangement achieves the same 

result. The far downstream flow is Poiseuillian, 

= , [2.10] 

where V is the downstream centerline velocity and is related to the discharge, Q, by 

Q = 2/32 v. [2.11] 

From [2.10] the stream function at plus and minus infinity is given by 

: 1 R 2 _ 1 ( R ~ ' ]  

The no-slip boundary condition on the cylinder wall, R =/3, is 

vz-- 0 } 
i R=t~ .  

q,=~ V/3 2 

On each of the N sphere surfaces, rj = a/3, the boundary conditions are 

v z - U j }  on r~=afl 
N - 1  N - 1  

v~ J = 2 to 2 

[2.121 

[2.13a] 

[2.13b] 

[2.14a] 

[2.14b] 

3. SOLUTION 

The general solutions to E ' ~  = 0 are originally due to Sampson (1891), but are also given by 
Savic (1953) and Haberman & Sayre (1958). In the cylindrical-coordinate system (R, z), the 
general solution, which is symmetric about z = 0 and generates finite velocities at R = 0 and as 

Izl--,~, is 

I? 2 ~(R,z)=a,R2+a2R4+ [A(t)RI,(Rt)+B(t)R I,(Rt)lcos(zt)dt, [3.11 
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where A (t) and B (t) are unknown functions of t, a, and a 2 are unknown constants, and Io and I~ 
are modified Bessel functions of the first kind. The treatment of geometries which are 
asymmetrical about z = 0 would require the addition of a Fourier sine integral to the solution 

[3.1], with the subsequent analysis proceeding along parallel lines. 
In the spherical coordinate system (r, 0), the general solution to E ' ~  = 0, constrained to 

vanish on the centerline, and to generate finite velocities on the cylinder axis (0 = 0, ~r) and 
vanishing disturbances far downstream (r --> lzl --, oo), is 

~b(r, O) = ~ [C.r "+' + D.r-"+3]~r. (~'), [3.2] 
n = 2  

where ft. (¢) are Gegenbauer (ultraspherical) functions of order n and degree I/2, and C. and D. 
are arbitrary constants of integration. 

Equation [3.2], representing a spherical disturbance in the flow field, is singular at the origin 
of coordinates, r = 0. In order to successfully satisfy the no-slip boundary conditions on the 
surface of each of the N spheres in the chain, it becomes necessary to place the singularity [3.2] 
at the center of each sphere. Utilizing the linearity of the governing equation and superposing 

the solutions [3.2] as written from N different origins of coordinates, we construct the spherical 
solution representing flow field disturbances created by N spheres, 

( I /2 ) (N- - I )  

~ -.  +~ - .  +3 N = odd. = [C,~rj +D, jrj ]~r (~), [3.3] 
j = - - ( I / 2 ) ( N - - I )  n =2 

Here the rj and 0j coordinates are measured from the origin of each sphere considered separately 
(see figure 1). For N even the origin is taken midway between the two central spheres and the 
indexing of j is altered. 

Equation [3.3] represents a sufficiently general solution to [2.4] for treating the axisymmetric 
motion of spheres in an unbounded medium (see Gluckman et al. 1971). In the present problem, 
however, the complete solution must also include the cylindrical-coordinate solution [3.1] in 
order to be able to satisfy the tube conditions as well. Hence, the general solution to [2.4] is 
constructed as the superposition of the cylindrical solution [3.1] and the spherical disturbance 
representation [3.3]; i.e. 

0 = a, R2 + a2 R4 + [A( t )RI , (R t )  + B(t)R2Io(Rt)l  c o s  (zt)  dt 

+ ~  ~ [C.jrf"+'+ .,rj ]ft.(st,). [3.41 D - n + 3  

j n = 2  

The index limits on the outer summation have been omitted for the sake of brevity and 
generality of application to odd and even-numbered chains, and henceforth it remains understood 
that the j-summation is carried for all the N spheres. As Iz I ~oo, [3.4] reduces to 

[ ~ ] r z l ~  = a,R 2 + a2R 4. 

Therefore, requiring a return to P oiseuille flow at infinity, one finds from [2.12] that the constants a. 
and a2 are 

1 l 
a, =~ V, a2 = -~ Vf1-2, [3.5] 

and [3.4] becomes 

\/3] 4 (~)4] ..~_ fo®[A(t)Ri~(Rt)+ B(t)R2Io(Rt)]cos(zt)dt 

+y. ~ [co, r,-~+' + D.,r,-'+~]:r~(~',). 
j n = 2  

[3.6] 
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The cylinder boundary conditions 
Using the properties of Gegenbauer and Legendre functions along with the appropriate 

transformations between the cylindrical coordinate system (R, z) and the spherical-coordinate 
systems (rj, 0r ; a l l  j ) ,  the general solution for the stream function [3.6] is differentiated to yield the 
z and R velocity components: 

v , = ~ a ~ =  v l -  

f; + {A ( t ) t lo(Rt)  + B ( t ) [ R t I , ( R t )  + 2Io(Rt)]} cos (zt)  dt  

+ ~ ~ {C.jPn (~'j)r~-"-' + D.j[P. (~'j) + 2~r. (~'~)]rf'+'}, 
j . = 2  

1 a ¢ _ / f  v~ = - -~ O--z - [A ( t ) I t (R t )  + B( t )R lo(Rt ) ]  t sin (zt) dt  

+ ~j n=2 ~ {Cnj[ "(n+ ~ojl)~'n+l('J)]J rj-"-' 

+ o.,[,,, + r , %  

[3.71 

[3.81 

where P,(~'j) are Legendre functions. 
The tube boundary conditions [2.13] and spherical-to-cylindrical coordinate transformations 

are then applied to [3.6] and [3.7]. The following two equations result from [2.13a] and [3.7], 

f; { ~, [C.,F. (zA+ D.jF."(zj)]}. A(t)t lo(~t)  + B(t)[f l tI ,(~t)  + 21o(//01 cos (zt) dt  = - ~ .=2 (') 

[3.9] 

and from [2.13b] and [3.6], 

fo ° 2 [ A ( t )[3I,([3t ) + B (  t )~2Io(~t )] cos (zt ) dt  = - ~'J ,=2 [ C"jF"°'(zi) + D"jF"(')(zJ)]' [3.10] 

where, for brevity, 

and 

zj -= z - jd/~, [3.111 

2"t-(n+D/2D [ Zi F.'"(z,)  = ( ~  + z , ,  ""LV(~+ 2,2)]' [3.12a] 

_~,-,.-,)t2~, [ zj 
F.°)(zj) = ([32+ z~ ~ "[V'(~ ~- z/)] '  [3.12c1 

F,)(zj) = ,02 ± 2,-..-,,nor [ zj ] , v  - z~, ,.,.[V,(B~- + zj2) ]. [3.12d] 

The right hand sides of [3.9] and [3.10] are representative, to within the yet-unknown C,I and 
D,j coefficients, of the effect of the spherical disturbances on the cylinder wall, where they are 
functions of the z coordinate only. Although the individual F~)(z~) functions (k = 1,2, 3, 4) are 
even in zj for even n and are odd in z~ for odd n, the complete right hand side of [3.9] and [3.10] must be 
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even functions of z, since they represent Stokes flow disturbances created by system having 

geometrical symmetry about z = 0. 
The left hand sides of [3.9] and [3.10] are seen as Fourier cosine integral representations of 

their right hand sides. They may be inverted and the resulting equations manipulated somewhat, 
while keeping in mind the discussion of the previous paragraph. From [3.9] and [3.10], 
respectively, 

A(t)tlo(~t) + B(t)[fltI~(flt) + 2Io(Bt)] = - ~_, ~,  "' ,2, [C~G.j(t)+ D~jG.j(t)], [3.13] 
J n=2 

A (t)flI,(~t) + B(t)f l  =lo(flt) = - ~ ~ o, (,, [C.~G.j (t) + D.~Gn~ (t)], [3.14] 
j n~2 

where, for k = 1, 2, 3, 4, 

G.j~k)(t) =-~ =~ Fjk~(zj)cos(zt)dz 

2cos  Ud~t) f :  F,'k'(zj)cos (zjt)dzj, n even 

= [3.15] 

_2 fo°F.'k'(z,)sin(z,t)dz,, n odd. sin qd#t ) 

The analytical technique for evaluating the eight integrals in [3.15] is detailed in the appendix, 
along with the resulting closed forms of the G~)(t) functions, [A.10]. 

Equations [3.13] and [3.14] are solved simultaneously for A (t) and B(t). These functions are 
then substituted into the general solution, [3.6], resulting in a new expression for the stream 
function, [3.16] below. This new solution for ~b satisfies the boundary conditions on the cylinder 
wall for arbitrary symmetric disturbances emanating from the spheres. Presented below is the 
result for ~ and the velocities v, and oR: 

1 

v.= v 1--~ + ~ ~= [C.,S.,(R.z)+ D.,T'.y(R.z)], [3.171 

v, = ~. ~. [C.,S~.~'(R, z) + O.,T~'(R, z)], [3.181 
i n = 2  

where the ~.,~k.)r~,.., z) and T~(R ,  z) are defined as follows: 

I: S ~ ( R , z ) =  rj-,÷, ~- (~) ~,Je°"°t~', t)cos (zt) dt, [3.19al 

f: T~(R,  z) = ~-"÷3~r~ (~) + d~'27 (R, t) cos (zt) dt, [3.19b] 

S~(R,  z) = rj-"-'P~ (~j) + ~,~qe,.., t) cos (zt) dt, [3.20a] 

-n4-! fO ~ -,J'ra~t o~,,, z)=r~ [P, (~) + 2~-, (~'D] + ~,'~<2~to, J ~-,, t )cos(zt)dt ,  [3.20b] 

.¢o.¥~, z) = r~-"-' (n + l)~r,+,(~'j) ,:~?~, ~"  " ' "  s-~n~ + ~., , . . , t )s in(zt)dt ,  [3.21a] 

T O.,ti2 z) = r~ -"÷' (n + l)5-.+,(~'~)-2~'jff,(~'~) fo ® ,~, . . . . .  ~ ~ I- ~.~ (R, t) sin (zt) dt. [3.21b] 
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The integrand envelope functions ~,,J:(k)to,.., t) and ~b~)(R, t) are given by 

~:~'(R, t) = ~ [hl'k'(R, t)G~'(t) + h2'k)(R, t )G ,~C'~ (t)], (t) 

[hl(k'(R, t)GO'(t) + h2(k'(R, t)G~)(t)] k = 1,2, 3, 4,~'(R, t) 

where 

and 

H ( t ) = [32tlo([3t ) [1 - IY(/~t)] - 2flI,(flt ), 

h,°)(R, t) = [2 + fltll([3t )lRI,(Rt ) - R 2tlo(Rt ), 

h2"'(R, t) = flfl([Jt )R2Io(Rt ) - [32RIt(Rt ), 

hlt2)(R, t) = [2 + fltfl(~t)]tlo(Rt) - t[RtI~(Rt ) + 2Io(Rt)], 

h2a'(r, t) = fll~([3t )[RtI~(Rt ) + 2Io(Rt )] - [32tlo(Rt ), 

hlO)(R,t ) t m = R  h' (R,t), 

h:~3>(R, t )  = t ! . . ) / o  t ) ,  R rt2 ~J~, 

[3.221 

[3.23] 

[3.24a] 

[3.24b] 

[3.25a] 

[3.25b[ 

[3.26a] 

[3.26b] 

12([Jt ) = I,([3t )l lo([Jt ). [3.27] 

The integrations indicated in [3.19], [3.20], and [3.21] must be carried out numerically. 
Equation [3.16] is the solution to the governing equation, [2.4], which satisfies the boundary 

conditions at infinity and all along the cylinder wall, R =/3, independently of the Cnj and D,s unknown 
coefficients, These coefficients are used to enforce the appropriate conditions on the surfaces of the 

spheres. 

The sphere boundary conditions 
The boundary conditions on the surface of sphere j are given by [2.14]: v~ = Uj, vR = 0, where 

Uj is the velocity of the sphere relative to the tube and vz and vR are given by [3.17] and [3.18]. 
The technique of applying these conditions is analagous to the multipole truncation method 
employed by Gluckman et al. (1971) for the unbounded flow problem. 

To satisfy the boundary conditions exactly along the entire generating arc of each sphere 
would require the solution of the entire infinite array of unknown coefficients. The truncation 
technique enforces the boundary conditions at a finite number of discrete points on each 
sphere's generating arc and truncates the infinite series into a finite one, 

\ f l /  4 + ~ ~2  [C.,S~j'(R,z)+ D.,T~'(R,z)]. [3.281 

The two unknown coefficients in each inner term of the double summation permit one to satisfy 
the exact no-slip boundary conditions at one discrete point on each sphere. Thus, if a spherical 
boundary is to be approximated by satisfying conditions [2.14] at M discrete points on its 
generating arc, M terms are retained in the inner series expansion, as in [3.28]. If there are N 
spheres in the chain, this results in a linear set of 2MN simultaneous algebraic equations for the 
2MN Cnj and D.j unknown coefficients of the truncated solution: 

M+l I ~ [C.,S~)(Rmk, z,,k)+D.,T~)(R.k, z,k)] = Uk - V 1 -  
. = 2  13 ~ 1' 
/~+1 

E Z c '" ,3, [ .tS.j (Rink, z,k) + D.jT.i (Rink, z,k)] = 0 [3.29] 
j n = 2  

atm ~pointonspherek;  r e = l , 2  . . . . .  M; all k. 

This matrix equation can be solved by any of the standard matrix reduction techniques. 
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The accuracy of the present truncation technique can be improved to any degree by taking a 
sufficiently large value of M, the order of the truncation. Naturally, as M---, oo the truncation error 
reduces to zero, and the overall accuracy is then limited only by the accuracy achieved in the 
numerical integrations which are performed in evaluating the matrix elements. As will be seen in 
section 5, the series converges quite rapidly, and very good accuracy is achieved with only a 
small number of boundary points on each sphere. 

4. V I S C O U S  D R A G  F O R C E  

The force exerted by the fluid on a spherical boundary, rj = constant, is shown by Happel & 
Brenner (1965) to be 

f = ~ / =  r," sin" r, dO,. [4.1l F, L ~ J  Jo 

Application of this operator and the orthogonality properties of the Gegenbauer functions to [3.16] 
results in the simple relation 

F~ = 47r/zD21. [4.2] 

That is, only the first order term (n = 2) of the inner series of [3.16] contributes to the drag force 

on each submerged sphere. 
The classical Stokes result for the drag force on an isolated sphere of radius a = aft moving 

with velocity U is 

F = 6zrtta U. [4.3] 

On the other hand, the drag in the presence of other solid boundaries is commonly expressed in 
terms of a convenient drag correction factor, a. Two drag correction factors are defined: ,~ eu) for 
spheres moving through a stationary fluid, and a (v) for stationary spheres in a fluid whose 

far-downstream velocity is given by [2.12]. 
For spheres moving with velocities Uj through an otherwise quiescent fluid (V = 0), we 

have, for sphere j, 

Fj = 41r/zD(~ ) = 6~r~a UjA/u>, [4.4] 

and hence 

~,u, O;p 
= l . S a U /  [4.5] 

That is, A[ u) is the ratio of the drag force on sphere j to that on an isolated sphere moving with 
velocity U~ through a quiescent fluid. 

On the other hand, in the case of flow past stationary spheres (Uj = 0, all j), we have 

Fj  = 4~'/zD(,~ > = - 6~rl~a V,~/v),  [4.6] 

and hence 

A/v, = D(2~ > 
1.5a V" [4.7] 

Here, too, ,~/v) is seen as the ratio of F~ to the drag force on a single stationary sphere in an 
infinite fluid of uniform velocity V. The negative sign arises from the fact that the D(, v) are 
necessarily negative. 
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When both the fluid and spheres are moving, the linearity of the equation of motion suggests 
that the net drag is the algebraic sum of the two drag forces discussed above, i.e. 

and 
= =4zr/z[D2j +D2j ], F~ 4~'/zD2j to) ( v )  

Fj = 6~r/xa [Uj,~j '°~- VAffq. 

[4.8] 

[4.9] 

It is thus necessary to consider only cases in which Ui = 0 (all j) or V = 0 and to treat the problem 
of the simultaneous motion of fluid and spheres as a superposition of its component problems. 

Examination of [3.29], [4.5] and [4.7] reveals that )tj (u) and Aft ) are strongly dependent on the 
system geometry, but that Aft ) is independent of V for all j. On the other hand, ;t: t') is a function 
of all N sphere velocities. 

A number of possible applications of [4.9] come to mind. One problem of interest considers 
one or two spheres suspended in a vertical tube in which fluid is being pumped against gravity. 
The flowrate required to keep the spheres stationary in the gravitational field is sought. Setting 
Uj = 0 and equating Fj to the force of gravity, one finds from [4.9] that 

U, 
V = A(v------5, [4.10] 

where U, is the infinite-medium, isolated-sphere, terminal settling velocity, U, = 
2a 2(psphere -- p )g /9Ix .  

Another application, of significant practical interest, is the zero-drag motion of spheres in a 
Poiseuille flow. When the particles are free to move along with the fluid and there are no body 
forces present in the direction of motion, they will tend to travel with different velocities such that 
the net drag force on each sphere is zero. Equation [4.9] indicates that this requires the fluid 
resistance to the motion of a sphere to exactly cancel the convective pull of the moving fluid, for 
each sphere of the chain. Although these zero-drag sphere velocities can be calculated from [4.9], 

U ~ (v) i _  i 
-V-Aj-~ '  all j, [4.11] 

their solution in this manner is cumbersome, since [4.11] is a set of nonlinear simultaneous 
equations for the velocities U~, each ;t~ v~ being a function of all the sphere velocities. 

A simpler, more direct approach is available. In solving the linear set [3.29], the N D2j 
coefficients are set to zero, and replaced by the N Uk velocity terms by transposition of terms. 
The number of equations and unknowns thus preserved, the matrix equation is then solved for 
the sphere velocities along with the rest of the Cnj and Dn~ coefficients. 

A third application is the calculation of wall correction factors to experimental data. In 
general, experimental information about particle dynamics in an infinite medium is obtained by 
dropping spheres in a large vessel and measuring their terminal settling velocities. To correct the 
experimentally measured velocities for the influence of the unavoidably finite cylindrical 
boundary, the factors kt and kn are defined, [e.g. see Happel & Pfeffer (1960)] so that 

kl f l  
A~ = - -  [4.121 

kll U." 

Here kt and k,  are wall correction factors for one and two spheres, accounting solely for the 
influence of the tube wall; A® is the particle interaction parameter for an infinite medium, 
accounting solely for inter-particle interaction effects; U~ and UII are the experimentally 
observed one-sphere and two-sphere terminal settling velocities. 
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The wall-sphere interactions are thus effectively separated from the sphere-sphere interac- 
tion effects, giving wall interaction parameters which can be used to correct experimental data. If 

is the overall drag correction factor, defined by [4.4] or [4.6] accounting for both wall and 
inter-particle interactions, it is easily seen that [4.12] reduces to 

,~ = A®klx. [4.13] 

Equation [4.13] will be used to calculate the wall correction factors for two spheres, kxx, and also 
for three spheres,/qn. 

5. S O L U T I O N S  F O R  O N E  S P H E R E  

Solutions, using the truncation technique, for the creeping flow past a single concentric sphere 
inside a long cylindrical tube will be presented in this section. The results of Haberman & Sayre 
(1958) will provide a convenient comparison. 

The most accurate lowest order truncation solution for the viscous drag force is obtained by 
choosing one point at 0j = ~r/2 on the sphere's semi-circular generating arc for satisfying the 
no-slip boundary conditions. This point is the most advantageous since it controls the projected 
area as well as the sphere-to-cylinder diameter ratio of the boundary shape approximating the 
sphere. Additional points are selected as mirror-image pairs about the line 0j = 7r/2 in order to 
preserve the geometric symmetry of the spherical boundary shape about this line. The procedure 
used in the present analysis for spacing these points along each boundary was to divide the half 
arc of the sphere into equal segments. 

An examination of the system [3.29] shows that when the 0j = ~r/2 point is used the equations 
become linearly dependent. In order to overcome this difficulty, the top point can be considered 
to be a doublet of closely adjacent points, i.e. 0r = ~r/2-+ 8. The optimum value of 8 is found by 
considering a succession of one sphere solutions in which the boundary conditions are satisfied at 
the top doublet point only, and varying 8. Examination of table 1 reveals that both ,V U> and A (v> 
converge to five significant figures for all sphere-to-cylinder diameter ratios, a, when 8 -< 0.8 °. 
Consequently, 8 was taken as 0.8 ° in all problems treated in this study, and these two top points at 
0j = 89.2 ° and 0j = 90.8 ° were considered to be the single high point required. 

The fundamental issue of series convergence rate still begs resolution. We must resolve the 
question of what order truncation solution is necessary, or at how many points on each sphere 
should the boundary conditions be satisfied, in order to achieve results of prescribed accuracy. 
The discrete point representation used in this study describes a distorted boundary shape which 
leads to truncation errors in the calculated drag force and velocity field. However, since the 
diameter ratio, a, and the projected area normal to the flow direction are the same for the 
distorted boundary as for a perfect sphere, the drag force on small, widely spaced spheres is not 
expected to be greatly affected by the number of boundary points used. However, in the case of 
large or closely spaced spheres, the exact boundary shape plays an increasing role in the 
sphere-cylinder interaction or the inter-particle shielding, and consequently the solution is 
expected to converge more slowly. 

Table 1. Drag factors for one sphere, M = 1. Convergence tests for optimum 8 

Diameter ratio, a = 0.1 a = 0.4 a = 0.6 

5 ° 1.2630 !.2499 3.78 ! 1 3.1302 24.127 14.277 
3 ° !.2638 1.2507 3.8352 3.1917 25.251 15.709 
2 ° 1.2640 1.2513 3.8770 3.2380 25.862 16.510 
1 ° 1.2641 1.2514 3.8895 3.2688 26.489 16.956 

0.9 ° 1.2641 1.2515 3.8902 3.2677 26.491 16.957 
0.80 1.2641 1.2515 3.8905 3.2682 26.493 16.958 
0.70 1.2641 1.2515 3.8905 3.2682 26.493 16.958 
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To obtain more precise information, the convergence characteristics of the one and two 
sphere problems were examined over a range of diameter ratios and spacings. Table 2 shows the 
drag correction factors, A <u~ and a ~v~, for a single sphere at various M and a. The table reveals a 
rapid convergence which is in dramatic contrast to the behavior of the method of reflections. 
Convergence to four significant figures is obtained when the boundary conditions are satisfied at a 
surprisingly small number of points on the sphere's generating arc. Even at a = 0.8 only fifteen 
points are required, and the convergence is remarkably fast at the lower diameter ratios--five 
points at a = 0.3, three points at a = 0.1. (As a->0, [3.28] with M = 1 reduces to the exact isolated 
sphere Stokes solution.) The truncation error ranges from 0.022% at a = 0.3 to 14.6% at a = 0.7 
when only three points on the generating arc are used. 

Haberman & Sayre (1958) obtained the solution for a single sphere moving along the axis of 
an infinite cylinder. Table 3 compares their solutions and the infinite chain results of Wang & 
Skalak (1969) with the drag correction factors obtained by the present truncation method. The 
Haberman & Sayre results and the present solutions agree to within 0.5% for diameter ratios of 
up to 0.6, but differ somewhat as the sphere radius approaches that of the tube. The results of the 
present theory listed in table 3 appear to be converged solutions, in the sense that further 
increases in the order of truncation result in no apparent improvement. Since Haberman & Sayre 
do not address the topic of convergence, a question arises concerning the complete convergence 
of their solutions. These doubts stem from the observation that Haberman & Sayre's results 
consistently fall between those of the present theory and their first-order truncation approximate 
solution. 

Table 2. Convergence of one-sphere solutions at various diameter 
ratios 

Diameter Number of 
ratio, a points, M ;t CU~ A ~v~ 

0.1 1 1.264 1.252 
3 1.263 1.255 
5 1.263 1.255 

0.3 1 2.429 2.21 I 
3 2.372 2.231 
5 2.373 2.231 
7 2.373 2.231 

0.5 1 7.575 5.682 
3 5.936 4.989 
5 5.975 5.018 
7 5.973 5.017 
9 5.973 5.017 

0.7 1 - 38.73 - 19.76 
3 21.60 15.66 
5 25.59 18.08 
7 25.26 17.89 
9 25.3O 17.91 

11 25.29 17,91 
13 25.29 17,91 

Table 3. Comparison of one-sphere solutions with results of Haberman & Sayre 
(1958). Wang & Skalak solutions are for an infinite chain of spheres which are 40 

cylinder radii apart 

Haberman & Sayre Wang & Skalak 
a A ~v> A ~v~ A (u)  A ~v~ A ~u~ h ~v~ 

0.0 1.000 1.000 
0. I 1.263 1.255 1.263 1.255 1.263 1.255 
0.2 1.680 1.636 1.680 1.635 1.680 1.635 
0.3 2.373 2.231 2.371 2,231 2.370 2.229 
0.4 3.599 3.223 3.5% 3.218 3.592 3.216 
0.5 5.973 5.017 5.970 5.004 5.949 4.996 
0.6 11.20 8.696 1 I. 14 8.651 11 dO 8.617 
0.7 25.29 17.19 24.96 17.67 24.70 17.49 
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On the other hand, the Wang & Skalak (1969) drag solutions for an infinite chain of spheres 

seem to lend support to the Haberman & Sayre results by approaching them as the inter-sphere 

spacing grows large. Although the largest spacing presented by Wang & Skalak is 40 tube radii, 
which, in view of the slow decay properties of Stokes flow disturbances, is by no means infinite, a 

discrepancy may exist in the present solution technique as a --, 1.0. This error would be due to the 
distortion of the spherical boundary shape resulting from the discrete rather than continuous 
application of boundary conditions on the sphere surface. As M increases, the distorted shape 

converges to true sphericity, but may do so very slowly if the boundary points are selected with 
equal spacing on the generating arc of the spheres. The effect of this distortion on the sphere- 

wall interaction, however, is significant only at large diameter ratios. 
In view of the above discussion, a further look into the problem for a -> 0.7 may be warranted. 

For example, a possible study would examine the convergence of the present solution with 
increasing M, when the M boundary points are concentrated near the top of the sphere, thus 
effecting a local correction of the distortion near the tube wall. This may yield results which are in 

closer agreement with Haberman & Sayre's solutions for values of a - 0 . 7 .  A closely related 
problem, the selection of boundary points for the near collision approach of two spheres, is described 

in Leichtberg et al. (1976a). 

6. SOLUTIONS FOR MULTIPLE SPHERES 

This section will examine the solutions for flow in a tube past finite chains of two or more 
spheres. To the best of the authors' knowledge exact solutions to this problem do not exist in the 
literature. 

In order to examine the solutions' rate of convergence as a function of particle spacing, a 
number of solutions to the two sphere problem at various diameter ratios and sphere spacings are 

presented in table 4. This study reveals a slower convergence than was exhibited for the single 
sphere, since the intersphere interaction is adversely affected by the boundary shape distortions 
resulting from using a finite number of points M. However, the solution still converges quite 
rapidly, particularly at the greater spacing. In the most difficult case of spheres touching 
( d / 2 a  = l), the minimum number of points required for a solution which is accurate to four 
significant figures ranges from seven at a = 0.1 to fifteen at a = 0.7 (and also at a = 0.8). 

Table 5 demonstrates the proper asymptotic approach of the drag results as a ~ 0  to the values 
predicted by the unbounded flow theory of Stokes (1851) for one sphere, of Stimson & Jeffery 
(1926) for two spheres, and of Gluckman et  al. (1971) for three spheres. 

Since solution of the flow past N spheres with M boundary-condition points on each 
generating arc involves the reduction of a 2 M N  by 2 M N  matrix equation, in which each element 

Table 4. Convergence of two-sphere solutions at various diameter ratios, for sphere spacings 
d/2a = 1 (touching) and d/2a = 2 

0.1 3 0.9306 0.88 80 1.078 1.006 
5 0.9321 0.8899 1.077 1.005 
7 0.9328 0.8907 1.077 1.005 
9 0.9328 0.8907 1.077 1.005 

0.3 5 2.072 1.917 2.320 2.117 
7 2.076 1.920 2.320 2.117 
9 2.076 1.920 2.320 2.117 

0.5 7 5.654 4.913 5.968 4.987 
9 5.655 4.909 5.968 4.988 

11 5.656 5.911 5.968 4.988 
13 5.656 5.911 5.968 4.988 

0.7 11 24.39 17.47 25.28 17.50 
13 24.42 17.46 25.28 17.50 
15 24.41 17.46 25.28 17.50 
17 24.41 17.46 25.28 17.50 

Diameter Number of 
ratio, points d/2a  = 1 d /2a  = 2 

a M A~u~ ~tv~ ,~tu~ A~v~ 
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Table 5. Asymptotic behavior of the calculated a(u) as a ~ 0, for one, two, and three spheres 

A~u) 
Two spheres Three spheres 

d /2a  = 1 d l2a  = 2 d /2a  = 1 d l 2 a  = 1.5 
One Spheres Spheres Sphere Sphere Sphere Sphere Sphere Sphere 

sphere - 1 & 1 - 1 & I - 1 0 1 - 1 0 1 

0.4 3.599 3.339 3.583 3.191 2.753 3.191 3.409 3.168 3.409 
10-' 1.263 0.9328 1.077 0.8613 0 . 5077  0 . 8613  0 . % 3 3  0 . 6 9 3 8  0.9633 
10 -2 1.022 0.6632 0.7662 0.6196 0 . 3538  0.61% 0 .6707  0 .4611  0.6707 
10 -3 1.002 0.6469 0.7446 0 . 6 0 8 2  0 . 3273  0 . 6082  0 . 6486  0 . 4 4 5 9  0.6486 
10-" 1.0002 0.6453 0.7425 0.6064 0 . 3263  0 . 6 0 6 4  0 . 6465  0 . 4 4 4 4  0.6465 
I0 -~ 1.0000 0.6452 0.7423 0.6062 0 . 3262  0 . 6062  0 . 6463  0 .4443  0.6463 
0 

unbounded 
theory 1.000 0.6452 0.7423 0.6062 0 . 3262  0 . 6062  0 . 6 4 6 2  0 . 4442  0.6462 

of the coefficient matrix is evaluated by a numerical integration to infinity, the computing time 
can become a serious practical limitation. In that respect, a substantial saving can be realized by 
making use of the symmetry of the solution about the z = 0 plane. It is easily verified that the 

S(~)¢R z )  and (k) .~ ,... T.j (R, z) matrix elements obey the relation 

S (k'._,,'R, - z )  = ( - 1)"+ES~)(R, Z)~ l. 
_,._j,_,Y (k' ~R -- Z) = ( - I)"+kT~)(R, z)J " = 2, 3. [6.1] 

Therefore, only the 2 M ~ N  2 matrix elements related to the boundary condition points on one side 
of the symmetry plane need be evaluated via numerical integration, while the other 2 M 2 N  2 

elements are formed from [6.1]. 
Solutions to flow past chains containing 1, 2, 3, 5, 7 and 9 spheres have been obtained, with the 

boundary conditions being satisfied at a sufficiently large number of points to achieve proper 
convergence to four significant figures. Actual computer execution times on the IBM 370/168 were 
found to be approx. [(l/4)(M + 1)N] 2 s per case, ranging from 3 s for one sphere with five points 
to 21 rain for nine spheres with fifteen points per generating arc. It was, therefore, out of the 
realm of practicality to obtain solutions for 9 or more touching spheres which converged to four 

significant digits. 
The drag correction factors for two-sphere chains are shown in figures 2 and 3. The one-sphere 

solutions and Wang & Skalak's (1969) infinite chain results are also shown for reference. Since 
the effect of the inter-sphere interactions is a reduction in drag force, the drag is seen to decrease 
with increasing chain length and narrowing interparticle gaps. The effect of the enclosing 
boundary, however, is a marked increase in the drag force which rises beyond bound as the 
lubrication limit is approached between the spheres and the tube wall. For a-~0, the results 

approach the unbounded flow values, as expected. 
The values of A (v) for a = 0.2, d/2a = 1 and 2, are plotted in figure 4 for chains containing 

different numbers of equally spaced spheres, and are shown again in figure 5 for a = 0.5. The 
infinite chain results of Wang & Skalak (1969) are also shown. Solid lines connect the discrete 
values to denote individual chains. 

The two figures vividly demonstrate the shielding characteristics of the interparticle interac- 
tions. The drag forces appear to be strongly dependent on the spacing between the spheres and on 
the number of spheres in the chain. The shielding effect is similarly responsible for the rapid 
change in drag as the end of a chain is approached, due to the fact that the end spheres receive the 
least amount of interactive shielding. The behavior of these end spheres with increasing chain 
length is underscored by the dashed curves. 

The shielding effects discussed above are very strong at d/2a = 1, but are reduced, or 
damped, drastically at d/2a = 2. Since this is particularly true at the higher diameter ratio, one is 
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Figure 2. Drag correction factor A ( v )  vs. diameter ratio. 
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Figure 4. Drag correction factors A/U) for chains containing various numbers of spheres of diameter ratio 0.2. 

led to consider the damping effect which the tube wall has on the interaction forces. This wall 

damping is clearly illustrated when one considers, for example, the four three-sphere curves in 
figures 4 and 5. The striking feature to be noted is that the degree of interparticle interaction, or 
shielding, as measured for each chain by the curvature of its drag curve and by its departure from 

the drag force calculated for a single sphere, is more strongly affected by changes in the spacing 
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Figure 5. Drag correction factors ,~ for chains containing various numbers of spheres of diameter ratio 0.5. 
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at the higher diameter ratio. Thus, while the diameter ratio has a moderate effect on the degree of 

shielding within closely packed chains, it appears to have a strong damping effect as the chain 
dilutes. 

A sphere executing zero-drag motion in a Poiseuille flow must, if energy dissipation is to be 
minimized, travel with a velocity which is less than the undisturbed centerline velocity, 
V/2 < Uj < V.t The disturbed velocity profiles due to such a sphere are marked by a local 
reduction in the centerline velocity. Consequently, when other spheres are present in the flow 
field, the interactions are characterized by the transmission of this centerline velocity defect due 
to each sphere to the boundaries of all the other spheres. Hence, the effect of the inter-particle 
interaction is to decrease the sphere velocities, which is the reverse of what is observed for a 
chain of spheres falling under gravity in a quiescent fluid. 

The values of U/V for one sphere are plotted against diameter ratios in figure 6. Also shown, 
for reference, are the infinite chain results of Wang & Skalak (1%9) for d/2a = 1. The third curve 
is the approximate results obtained in Leichtberg et aL (1976b) for a single sphere moving with 
zero drag along the centerline of a parabolic fluid velocity profile in an unbounded medium, i.e. in 
a fictitious Poiseuille flow v = V(1-  R~/[32) which exists without the benefit of a solid wall at 
R =/3. Figure 6 seems to indicate that the tube wall has no effect on the sphere's velocity for 

b i I ] I I I ~ I 
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0.9 - \.~ 

u/v \~,~ 

o.~- \~'~ - 

\ 
o .  sp , . , . ,  . ~ ,  ~ \~\\ 
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a 

Figure 6. Zero-drag velocity vs. diameter ratio for one sphere, exact and approximate. Also shown are Wang 
& Shalak (1%9) solutions for an infinite chain of contiguous spheres, 

a < 0.2, and exerts only a modest influence at the higher diameter ratios. Similar behavior is 
observed for the motion of two spheres since the two spheres experience equal interactions. A 
comparison of the results for chains of three or more spheres, however, shows that the wall does 
exert a significant influence on the intrachain, inter-sphere interaction. 

tA consequence of this constraint is Aj(v) <Aj'u), witness [4.1 I]. 
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Figure 7. Zero-drag velocities in chains of diameter ratio 0.5, d/2a = 1.I, and varying length. 

Figure 7 presents the zero-drag velocities for chains of equal spacings and various lengths, 
with a = 0.5 and d/2a = 1.1. One observes that increasing the chain length tends to decrease the 
sphere velocities, and that the outer spheres of a given chain move faster than the central ones, 
clearly demonstrating the interactions and their end effects, respectively. 

The effect of increasing the diameter ratio is a reduction in the mean Poiseuillian velocity seen 
by the spheres and, hence, a decrease in their zero-drag velocities relative to the mean suspension 
velocity. The influence of the diameter ratio on the inter-sphere relative velocities requires a 
somewhat closer look. In the limit of vanishing sphere size, a--> 0, the particles move in a flow field 
which is uniform in its undisturbed state. Consequently, A ~u)~ A ~v) and Uj/V ~ l, there being no 
interaction between the particles. As the diameter ratio increases, however, particle interaction 
effects appear, due to the non-uniform velocity profile. Further increases bring the wall 
interaction into play, and the wall damping effects become progressively more prominent. Thus, 
the degree of interparticle interactions is small for a<0.1,  reaches a maximum in the 
approximate range 0.3 < a < 0.4, and is quickly damped out for a > 0.5, particularly in chains of 
medium concentration, d/2a > 2. 

Figures 8 and 9 present Uj/V for chains of five equally spaced spheres at various spacings, of 
diameter ratios of 0.3 and 0.5, respectively. A comparison of the two figures shows that the wall 
damping effect is of relatively little importance to the closely-packed chains, d/2a = 1.1 and 1.3, 
but is of much greater significance to the chains with larger spacing. 

The interaction effects in zero-drag motion appear to be roughly two orders of magnitude 
smaller than the effects of the shielding phenomenon reported earlier for constrained sphere 
motion. 

Table 6 presents, for the sake of completeness, the zero-drag velocities of one and two-sphere 
chains. 

Equation [4.13] was used to calculate the wall correction factors. The results are presented 
below in the form of correlation relations, valid only for small sphere-to-tube diameter ratios a. 

(i) Two spheres translating in a stationary fluid. Validity limited to close spacings, 1 <- d/2a <- 2. 



STOKES FLOW PAST FINITE COAXIAL CLUSTERS 165 

0 . 8 4 2  

0 . 8 3 8  - -  

r 

0 , 8 3 4  - -  

0 . 8 3 0  - -  

0 . 8 2 6  - -  

I I 
a = O , 5  

I I I 

d / 2 a  

0 . 9 4 4  

0 . 9 4 0  

U j / V  

0 . 9 3 6  

0 . 9 3 2  

0 . 9 2 8  

L I L I I 
a = O , 3  

d/2a  

I L I I t t L I I 
- 2  -1 0 1 2 - 2  -1  0 1 

Sphere  n u m b e r  ( | )  S p h e r e  n u m b e r  ( j )  

Fig. 8. Fig. 9. 

L 
2 

Figure 8. Zero-drag velocities in five-sphere chains of diameter ratio 0.3 and varying sphere spacings. 

Figure 9. Zero-drag velocities in five-sphere chains of diameter ratio 0.5 and varying sphere spacings. 

Table 6. Zero-drag velocities, U~ V, for one and two 
sphere chains 

2 spheres 
a 1 sphere d/2a = 1 dl2a = 2 

0.0 1.000 1.000 1.000 
0.1 0.9935 0.9926 0.9932 
0.2 0.9734 0.9705 0.9727 
0.3 0.9404 0.9378 0.9400 
0.4 0.8957 0.8882 0.8953 
0.5 0.8400 0.8329 0.8397 
0.6 0.7763 0.7713 0.7761 
0.7 0.7081 0.7042 0.7080 
0.8 0.6378 0.6369 0.6378 

ror  of 0.2% at a = 0 . 1 ,  1 . 4 %  a t  a = 0 .2 .  

k~ u ) =  exp [a (3.6591 + 0.4594a)]. [6.2] 

(ii) Two spheres t ranslat ing in a s tat ionary fluid. Valid at all spacings, 1 <-d/2a < ~ .  
aximum error of 0.5% for a-< 0.2. 

k h U ' = l + l . 8 6 a + 7 . 7 a 2 + 5 . 5 5 2 a ( d ) + l . 3 9 a 2 ( d ) - 4 . 2 2 8 a ( d ) 2 + 3 . 6 6 a 2 ( ~ )  2. [6.3] 

(iii) Two stat ionary spheres in a Poiseuil le  flow. Validity limited to close spacings 1 -< d/2a <- 2. 

for of 1% at a = 0 . 1 ,  2% at a =0.2 .  

k~ v ) =  exp [a (2.8376 + 2.9043a)]. [6.4] 
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(iv) Two stationary spheres in a Poiseuille flow. Valid at all spacings, 1 -<d/2a <~. 
Maximum error of 0.7% for a -< 0.2. 

k[V'=l+l .92a+6.3a2+ 1.1925a(~--~a)+ 15.115a2(~ --~a) -0.599a(-~) 2-  8.49a2(-~) 2. [6.5] 

(v) Three spheres translating in a quiescent fluid. Validity limited to close spacings 1-< 
d/2a -<2. Maximum error for a-<0.2 is 5.0% for [6.6] and 2.3% for [6.7]. 

kCU) exp [a(3.7051 =0.5089a)], end spheres, III = 

kW)_ exp [a(2.7745 + 16.675a)], inner sphere. l l I  - -  

[6.6] 

[6.7] 

Equations [6.2], [6.4], [6.6] and [6.7] are of the form: k = exp [a(Co + Cla)], where Co and CI are 
arbitrary constants. This form was chosen because of the near iinearity of In ;t (a) at small 
diameter ratios, as evidenced in figures 2 and 3. The coefficients Co and C, were determined by 
fitting the above equation to the data at a = 0.0, 0.1, 0.2. Equations [6.3] and [6.5] were derived by 
fitting the form 

k(a)=  Co(a)+ C,(a)(~--~a)+ C2(a) (~--~a) 2, 

Ci(a)=Pi +q,a+rla 2, i=0 ,1 ,2 ,  

(where po = 1, p l = p2 = 0 to satisfy the asymptotic condition k(0) = 1) to the data for 2a/d = 0.0, 
0.5, 1.0 and a = 0.0, 0. l, 0.2. The accuracy of [6.2] to [6.7] was checked at the test data points as 
well as at intermediate values. 
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APPENDIX 
The analytical integration procedures required for the closed-form evaluation of the G~)(t) functions,[3.15], are presented 

here. The F,(~)(zj) functions are listed in [3.12a-d]. 
The eight integrals are evaluated by inductive reasoning, using the properties of the Legendre and Gebenbauer functions• 

We begin with the Fourier integral representation of the modified Bessel function of the second kind (see Abramowitz & 
Stegun, 1965). 

_,2/2V_/. 1\ f® +x2)_l_(,/2)cos K,(t)=. L~)tU+~)L (l <xt)dx tA.~l 

Equation [A.I] can be manipulated and solved for the Fourier transform, 

2fo't'K,(~t)cos(xt)dt=~r-"'2>(2p)'F(i+~)(#2+x2)-'-"'2), i =0,1,2 . . . . .  [A.2] 

We first prove that 

+x2~ ...... ,2p [ x ] ~fo't'lC°(pt)c°s[xt-'n-2)2]dt=-"(a' " ° t ~ J  n--0. [A.3I 

With i = 0, [A.2I reduces to 

fo'KO<.t)cos(xt)dt:( 2+x2>,,,2,=.o . . . .  ,_,,,2,o 
,p --, -OL~/(fl2+x2)J' 

Successive differentiations with respect to x yield 

- 2  fo®tKo(,t)sin(xt)dt= - ( , '  + x ' ) - ' P , [ ~ ] ,  

- 2  fo®t2Ko(pt) cos (xt) dt= 2(,2 + x2>-"2 p 2 [ ~ ] .  

The last three equations verify [A.3] for n = 0, I, 2, respectively. We now differentiate [A.3] with respect to x: 

4 fo®t"+'Ko(~t)sin [xt-(n - 2) 2J dt 

2 2 --(n +2)/2 X X p X 

:(n + l'VZa2+x2' ..... )/2p [..._.~x ] 
,.,,., , . +1 L V ( / 3 ~  + x2) j .  

since sin [xt- (n -2)7r/2] = cos [xt- (n -1)¢r/2], this completes the inductive proof of [A.3] for all n -> 0. 
We next write [A.2] with i = I and follow with a line of induction, which parallels the proof of [A.3], to prove the following 

relation (details omitted) 

_ _~ n !  ~ 2-,n-,),, x 2fo=t'-'K,(Bt)cos[xt ( n - 2 ) 2 ] d t - / 3  (fl + x )  oCn[~/(/32+x2)], n->2. [A.4] 

What follows in deriving the desired integrals centers on [A.3] and [A.4] and involves their manipulation and re-indexing. 
Using the properties of the Legendre and Gegenbauer polynomials, and combining the integrals in [A.3] and [A.4], it can be 
shown that 

fo"  ,,2tKo<at,-<n- 2)(n-3)flK,(flt)] cos [ x t -  <n-  2> 2]  d t = n  '<f12+x2)-tn-')'2~ I x  "] • "LV(/3~ + x2)_1' 

n - 2 [A.5] 

and 

-~ t'-2[n(n - I)Ko(Bt)-(2n - l)ptK,(Bt)]cos xt -(n -2)  dt - -.,,.. ~ , . .\X/(fl2+x2) ], n >- 2. 

[A.6] 
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Equations [A.3]-[A.6] all have the following general form: 

2 fo'g.<"(t)cos [ x t - ( n  - 2) 2 ] dt = n ,f."'(x), n -> 2, [A.71 

where [A.3, 4, 5, 6] are represented by k = 1,2, 3, 4, respectively, and [ . ( -  x )=  ( -  l)"f,(x). It is further noted that 

[ 2] - ( - 1 ) " ' 2 c ° s ( x t ) ' n = e v e n  [A.81 

cos x t - ( n - 2 )  = -( - l )C ' -~/2sin(xt) ,  n=odd .  

Equations [A.7] and [A.8] are combined, and the Fourier transforms are extracted, yielding 

o® .,,)..fcos (xt)] = ~[ -(- I)~ n ,,,'~ I g "'(t) 
I. tX1[sin(xt)~ dx [-(-I)"- Jn! " ' 

n = e v e n  / 

n =odd J '  
n -->2, 
k = 1,2,3,4. 

[A.9] 

The derivation of the required integrals is now completed by comparing [A.7] to [A.3]-[A.6], extracting the eight 
functions f.¢h~(x) and g.a>( t ) .  A subsequent glance at [3.12] reveals that 

F.'"(x) = -f . '"(x),  
F.'~'(x) =/.'(x) + 2/~/.~)(x), 
F.O'(x) = ,Sf.a>(x), 
F. '4'(x ) =/O,(x). 

Therefore, substitution for f.~k~(x) and g.'~'(t) in [A.9] yields the functions G~)(t) of [3.15]: 

where 

G ~ ( t )  = - b . j ( t ) t " K o ( B t ) ,  

G~'(t) = b.~(t)t"-2[n(n - 1)Ko(~t) - (2n - 3)fltKl(flt)], 
G ~ ' ( t )  = b .~ ( t ) f l t ' -~  K , ( f l t ) ,  

G~>(t) = b.~(t)~t --~[(2n - 3)~tKo(Bt) - (n - 2)(n - 3)Kl(~t)], 

b.j(t)=" 
" - ( -  I)'n~n~.cos(jdBt), n =even 

( _ 1)t,-,)n ~ sin (jd[3t), n = odd. 

[AA0] 

[A.11l 
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